
Journal of Neural Engineering

PAPER

DataHigh: graphical user interface for visualizing
and interacting with high-dimensional neural
activity
To cite this article: Benjamin R Cowley et al 2013 J. Neural Eng. 10 066012

View the article online for updates and enhancements.

Related content
Self-recalibrating classifiers for intracortical
brain--computer interfaces
William Bishop, Cynthia C Chestek, Vikash
Gilja et al.

-

ERAASR: an algorithm for removing
electrical stimulation artifacts from
multielectrode array recordings
Daniel J O’Shea and Krishna V Shenoy

-

Eliciting naturalistic cortical responses with
a sensory prosthesis via optimized
microstimulation
John S Choi, Austin J Brockmeier, David B
McNiel et al.

-

Recent citations
Comparing Open-Source Toolboxes for
Processing and Analysis of Spike and
Local Field Potentials Data
Valentina A. Unakafova and Alexander
Gail

-

Bayesian Computation through Cortical
Latent Dynamics
Hansem Sohn et al

-

Emergent modular neural control drives
coordinated motor actions
Stefan M. Lemke et al

-

This content was downloaded from IP address 128.112.67.23 on 14/11/2019 at 02:01

https://doi.org/10.1088/1741-2560/10/6/066012
http://iopscience.iop.org/article/10.1088/1741-2560/11/2/026001
http://iopscience.iop.org/article/10.1088/1741-2560/11/2/026001
http://iopscience.iop.org/article/10.1088/1741-2552/aaa365
http://iopscience.iop.org/article/10.1088/1741-2552/aaa365
http://iopscience.iop.org/article/10.1088/1741-2552/aaa365
http://iopscience.iop.org/article/10.1088/1741-2560/13/5/056007
http://iopscience.iop.org/article/10.1088/1741-2560/13/5/056007
http://iopscience.iop.org/article/10.1088/1741-2560/13/5/056007
http://dx.doi.org/10.3389/fninf.2019.00057
http://dx.doi.org/10.3389/fninf.2019.00057
http://dx.doi.org/10.3389/fninf.2019.00057
http://dx.doi.org/10.1016/j.neuron.2019.06.012
http://dx.doi.org/10.1016/j.neuron.2019.06.012
http://dx.doi.org/10.1038/s41593-019-0407-2
http://dx.doi.org/10.1038/s41593-019-0407-2
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssVi4kAhxRBxM9Kn1CIjVmiuYKCjEzvtSqesS73alqTyn70ARRlT_WR2QF7UvExXTF7j_lENYSGBXYM8e1DAqX7GBYhhmzzZVnlC6z6UIgfAKNjvQ14fNV9iJgcYeuTdVado7xf-sL8p8I4fU_DktosUXepJ451Zp6hfY3bTqJ_ErBUKBLPjhzGRY9JWYEJG6B8vNYGvGaAz5FRBqgKcNr-5L0P_RhLzDAJ6MTESTg9BfptL1bA&sig=Cg0ArKJSzJ78ISyoAUun&adurl=https://brightrecruits.com/jobs/translational-bioengineering

IOP PUBLISHING JOURNAL OF NEURAL ENGINEERING

J. Neural Eng. 10 (2013) 066012 (19pp) doi:10.1088/1741-2560/10/6/066012

DataHigh: graphical user interface for
visualizing and interacting with
high-dimensional neural activity
Benjamin R Cowley1,2, Matthew T Kaufman3,4,5, Zachary S Butler6,7,
Mark M Churchland3,4,8, Stephen I Ryu4,9, Krishna V Shenoy3,4,10,11

and Byron M Yu2,12,13

1 Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA
2 Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
3 Neurosciences Program, Stanford University, Stanford, CA, USA
4 Department of Electrical Engineering, Stanford University, Stanford, CA, USA
5 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
6 Department of Electrical Engineering, Grinnell College, Grinnell, IA, USA
7 Department of Computer Science, University of California-Irvine, Irvine, CA, USA
8 Department of Neuroscience, Columbia University Medical School, New York, NY, USA
9 Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA, USA
10 Department of Bioengineering, Stanford University, Stanford, CA, USA
11 Department of Neurobiology, Stanford University, Stanford, CA, USA
12 Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
13 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

E-mail: byronyu@cmu.edu

Received 24 June 2013
Accepted for publication 2 October 2013
Published 12 November 2013
Online at stacks.iop.org/JNE/10/066012

Abstract
Objective. Analyzing and interpreting the activity of a heterogeneous population of neurons
can be challenging, especially as the number of neurons, experimental trials, and experimental
conditions increases. One approach is to extract a set of latent variables that succinctly
captures the prominent co-fluctuation patterns across the neural population. A key problem is
that the number of latent variables needed to adequately describe the population activity is
often greater than 3, thereby preventing direct visualization of the latent space. By visualizing
a small number of 2-d projections of the latent space or each latent variable individually, it is
easy to miss salient features of the population activity. Approach. To address this limitation,
we developed a Matlab graphical user interface (called DataHigh) that allows the user to
quickly and smoothly navigate through a continuum of different 2-d projections of the latent
space. We also implemented a suite of additional visualization tools (including playing out
population activity timecourses as a movie and displaying summary statistics, such as
covariance ellipses and average timecourses) and an optional tool for performing
dimensionality reduction. Main results. To demonstrate the utility and versatility of DataHigh,
we used it to analyze single-trial spike count and single-trial timecourse population activity
recorded using a multi-electrode array, as well as trial-averaged population activity recorded
using single electrodes. Significance. DataHigh was developed to fulfil a need for visualization
in exploratory neural data analysis, which can provide intuition that is critical for building
scientific hypotheses and models of population activity.

(Some figures may appear in colour only in the online journal)

1741-2560/13/066012+19$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/1741-2560/10/6/066012
mailto:byronyu@cmu.edu
http://stacks.iop.org/JNE/10/066012

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

1. Introduction

A major challenge in systems neuroscience is to interpret
the activity of large populations of neurons, which may be
recorded either simultaneously or sequentially (Stevenson
and Kording 2011). During exploratory data analysis, there
are several key benefits to analyzing the activity of a
population of neurons together. First, instead of averaging
across experimental trials, we can leverage the statistical
power of the recorded population to denoise and analyze
the neural activity on a single-trial basis (Yu et al 2009,
Churchland et al 2007). Second, salient structure in the neural
population dynamics may be more easily discernible when
considering the activity of many neurons at once rather than
the activity of one neuron at a time (Churchland et al 2012,
Mante et al 2013, Stopfer et al 2003). Third, this allows
us to embrace the heterogeneity of the activity of different
neurons (Churchland and Shenoy 2007, Machens et al 2010),
in contrast to selectively analyzing a subset of the recorded
neurons that appear to be most interpretable.

To understand how population activity differs across
individual experimental trials, one might display the raster plot
for each trial, where a tick mark represents a neuron’s action
potential (figure 1(A)). As the number of neurons and trials
grows, it can be difficult to pick out key features in the raster
plots that differentiate one trial from another (Churchland
et al 2007). In addition, one may seek to understand how
population activity differs across experimental conditions.
A common approach is to average the spike trains across
trials to create a peri-stimulus time histogram (PSTH) for
each neuron and experimental condition (figure 1(B)). As
the number of neurons and conditions increases, the task of
comparing population dynamics across different conditions
can be challenging due to the heterogeneity of the PSTHs
(Churchland and Shenoy 2007, Machens et al 2010, Mante
et al 2013, Rigotti et al 2013).

To overcome these difficulties, we can extract a smaller
number of latent variables that succinctly summarize the
population activity for each experimental trial (figure 1(C))
or for each experimental condition (figure 1(D)). There are
two complementary ways of understanding the relationship
between the latent variables and the recorded neural activity.
First, the latent variables can be viewed as ‘readouts’ of
the population activity, where each latent variable captures a
prominent co-fluctuation pattern among the recorded neurons.
The latent variables can be obtained by simply adding and
subtracting the activity of different neurons, while possibly
incorporating smoothing in time. Second, because these latent
variables capture the most prominent co-fluctuation patterns,
the population activity can be ‘reconstructed’ by adding and
subtracting the patterns in different ways for different trials
or conditions. This approach has been applied to study the
motor system (Yu et al 2009, Churchland et al 2010, 2012,
Afshar et al 2011, Shenoy et al 2013), olfactory system
(Stopfer et al 2003, Mazor and Laurent 2005, Broome et al
2006), visual system (Churchland et al 2010), auditory system
(Luczak et al 2009, Bartho et al 2009, Bouchard et al 2013),
working memory and decision making (Machens et al 2010,

Harvey et al 2012), visual attention (Cohen and Maunsell
2010), and rule learning in prefrontal cortex (Durstewitz et al
2010). Dimensionality reduction methods to extract these
latent variables include principal component analysis (PCA)
(Machens et al 2010, Stopfer et al 2003, Mazor and Laurent
2005, Briggman et al 2005), factor analysis (FA) (Santhanam
et al 2009), Gaussian-process factor analysis (GPFA) (Yu
et al 2009), and locally-linear embedding (LLE) (Stopfer et al
2003).

The basic setup is to first define an n-dimensional space,
where each axis represents the firing rate of one of the
n neurons in the population. A dimensionality reduction
method is then applied to the n-dimensional population activity
to determine the number of latent variables, k, needed to
adequately describe the population activity (k < n), as well as
the relationship between the latent variables and the population
activity (figure 2). These latent variables define a reduced k-
dimensional (k-d) latent space in which we can study how the
population activity varies over time, across trials, and across
experimental conditions. Ideally, we would like to visualize the
latent variables directly in the k-dimensional space. However,
the number of latent variables, k, is typically greater than
3 (Yu et al 2009, Santhanam et al 2009, Machens et al
2010) and direct plotting can only provide a two-dimensional
(2-d) or three-dimensional (3-d) view. If specific features of
interest of the population activity are known, one approach is
to specify a cost function to find a 2-d projection of the k-d
space that illustrates those features (Churchland et al 2012).
However, in exploratory data analysis, such features may be
unknown in advance, and viewing a single 2-d projection can
be misleading. As illustrated in figure 2, the same 6-d latent
space can yield rather different looking 2-d projections. This
underscores the need to look at many 2-d projections to obtain
a more complete picture of the high-dimensional structure of
population activity.

To quickly and smoothly view many 2-d projections,
we developed an interactive graphical user interface (GUI),
called DataHigh, in Matlab for visualization of the k-d latent
space. The user uploads raw spike trains to DataHigh, which
then guides the user to perform dimensionality reduction
and to quickly visualize a continuum of 2-d projections. We
found DataHigh to be a valuable tool for building intuition
about population activity, for hypothesis generation, and
for development of models of population activity. Although
high-dimensional visualization is a challenge across many
scientific fields, DataHigh has tools tailored to neural data
analysis that are currently not present in general-purpose
high-dimensional visualization software (Swayne et al 2003).
DataHigh is versatile and can be used to study population
activity recorded either simultaneously (using multi-electrode
arrays) or sequentially (using conventional single electrodes).
The population activity may be in the form of single-trial spike
count vectors (taken in a single time bin on each experimental
trial), single-trial timecourses (where spike counts are taken
in small, non-overlapping time bins), or trial-averaged
timecourses (PSTHs). For each class of population activity,
DataHigh can extract the corresponding latent variables,
termed neural states, single-trial neural trajectories, and

2

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

neurons

time (s)

1
2

61
0 1.00.5

S
1

S
2

(A)

(B)

45

0

20

0 100 200

Neuron 1

(spikes/sec)

time (ms)

(C)

(D)

Neuron 2

Neuron 3

Neuron 4

Neuron 5

Neuron 6

Trial 1

Trial 2

Trial 3

Trial 3

Trial 1

Trial 2

Condition 1

Condition 2

Condition 3

Condition 5

time

Condition 4

time

S1

S2

Figure 1. Conceptual illustration of applying dimensionality reduction to neural population activity. (A) Comparing population activity
across repeated trials of the same experimental condition. Each raster plot corresponds to an individual experimental trial. (B) Comparing
trial-averaged population activity across different experimental conditions. The peri-stimulus time histograms (PSTHs) of six neurons with
five different experimental conditions are shown. (C) A dimensionality reduction method (GPFA) was applied to single-trial population
activity (three trials are shown in panel (A)) to extract 15-d single-trial neural trajectories. Each trajectory corresponds to a different
experimental trial. S1 and S2 define a 2-d projection of the extracted 15-d latent space. (D) A dimensionality reduction method (PCA) was
applied to trial-averaged population activity (five experimental conditions are shown in panel (B)) to extract 6-d trial-averaged neural
trajectories. Each trajectory corresponds to a different experimental condition. S1 and S2 define a 2-d projection of the extracted 6-d latent
space.

trial-averaged neural trajectories, respectively. We previously
presented a preliminary version of this work in Cowley et al
(2012). Section 2 describes how to use DataHigh for neural
data analysis and the tools available in DataHigh. We then
apply DataHigh to experimental data in section 3, and compare
DataHigh to a general-purpose visualization tool in section 4.

2. DataHigh

In section 2.1, we first outline a step-by-step procedure to
illustrate how DataHigh can be used for exploratory neural
data analysis. We then lay out the mathematical formulation
for finding 2-d projections in DataHigh (section 2.2), describe
a suite of neural data analysis tools included in DataHigh
(section 2.3), and specify how the data should be preprocessed
and formatted for input into DataHigh (section 2.4). In
section 2.5, we introduce a dimensionality-reduction tool that

takes, as input, raw neural spike trains, computes neural states
or neural trajectories, and uploads the results to DataHigh for
visualization.

2.1. Data analysis procedure

We describe and motivate a neural data analysis procedure that
incorporates DataHigh and involves four steps: pre-processing,
dimensionality reduction, visualization, and testing (figure 3).

In the pre-processing step, the user first inputs single-trial
raw spike trains into DimReduce, a plug-in tool of DataHigh
(left-hand side of figure 3). DimReduce first takes spike counts
in non-overlapping time bins, where the bin width is specified
by the user in the GUI and determines if the neural activity will
be represented as neural states or single-trial neural trajectories
(section 2.4). For single-trial neural trajectories, DimReduce
presents two optional actions: to average across trials (for trial-
averaged neural trajectories) and to apply kernel smoothing.

3

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

S

raw neural
 activity

n-d

latent space

k-d

dimensionality
reduction DataHigh

1

S
2

Figure 2. Flow diagram for visualization of population activity. Dimensionality reduction is performed on high-dimensional population
activity (n-d, where n is the number of neurons) to extract a latent space (k-d, where k is the number of latent variables). Typically, k is less
than n but greater than 3. We can then use DataHigh to visualize many 2-d projections of the same latent space. Shown here are six different
2-d projections of the same 6-d (k = 6) latent space described in section 3.3.

In the dimensionality reduction step, the user selects a
dimensionality reduction method to extract latent variables
from the neural population activity (section 2.5.1). After
DimReduce has either performed cross-validation or extracted
a large number of latent variables, the user can choose a
latent dimensionality for visualization (section 2.5.2). These
latent variables are automatically uploaded to DataHigh for
visualization. Alternatively, dimensionality reduction can be
performed outside of the DataHigh environment (right-hand
side of figure 3). The first steps are to take binned spike counts
and to choose whether to average across trials and whether
to apply kernel smoothing. Then, a dimensionality reduction
method that has not yet been implemented in DataHigh can be
applied to the data. Finally, the extracted latent variables need
to be formatted correctly and input into DataHigh (section 2.4).

The next step in the data analysis procedure is to
visualize the extracted neural states and trajectories, whose
dimensionality is typically greater than 3. By including
visualization as a step in exploratory data analysis, the
experimenter can potentially save a substantial amount of
time in filtering out hypotheses about features that are not
salient in the population activity and guiding the experimenter
toward building hypotheses and intuition about features that
are salient. This can help guide the development of algorithms
and models that attempt to extract statistical structure from the
population activity (section 3).

A standard way to incorporate visualization is to first
hypothesize about a feature of the data and then define a
cost function to search for a 2-d or 3-d projection that shows
the existence of such a feature. If the hypothesized feature
appears to be present, statistical tests can then be applied.
However, there are two drawbacks to this approach. First,
individual 2-d projections of high-dimensional data can be
misleading. For instance, two points that are close together
in 2-d visualization may not be close together in the high-
dimensional space. Second, this ‘guess-and-check’ approach
may require the application of many cost functions before
salient features are found, and can potentially miss features

that were not hypothesized. Instead of limiting visualization
to a small number of projections found by cost functions,
the user can interactively view many 2-d projections of the
latent space with DataHigh (section 2.2), and utilize a suite of
built-in analysis tools that assist in the visualization process
(section 2.3). The user can then use DataHigh to visually
investigate existing hypotheses while building intuition and
new hypotheses.

After hypothesis-building from visualization, the user can
perform statistical tests on the hypotheses. If the user has an
existing hypothesis about the population activity (either from
previous studies or from analyses of other datasets), the user
can visually inspect whether the hypothesis holds and apply
statistical tests to the data (left-hand side of testing in figure 3).
These tests typically produce quantitative metrics (e.g., p-
values, decoding accuracy), which can be complemented with
visualization to add qualitative intuition about why a test
succeeds or fails. However, if visualization suggests a new
scientific hypothesis, statistical testing should be done on held-
out datasets (either different datasets collected from the same
subject or from different subjects), which avoids bias that
comes from testing hypotheses suggested by the data (Berk
et al 2010) (right-hand side of testing in figure 3). Testing
can either be done in the k-d latent space or the original
n-dimensional space. The advantage of testing in the latent
space is that the data are ‘denoised’ and effects may be more
pronounced. However, the user needs to carefully consider
whether the dimensionality reduction method can build the
effect in question into the neural states or neural trajectories,
either via simulations or analytical reasoning. It is often ‘safer’
to use the latent space for hypothesis generation, and then test
the hypothesis in the original high-dimensional space (Afshar
et al 2011).

Another benefit of DataHigh is that it can be used to
quickly view and triage the large amounts of data produced by
a neuroscience experiment. With single-electrode recordings,
it is common to listen to each spike as it streams in and to
plot a neuron’s PSTHs and tuning curve during an experiment.

4

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

single-trial raw spike trains

specify bin width
for spike counts

choose dimensionality
reduction method perform dimensionality

reduction on data with
desired method

choose to perform cross-
validation or to extract a large
number of latent variables

choose dimensionality
for visualization

format data and
input into DataHigh

view many 2-d projections
of latent space

 utilize suite of analysis tools

visually investigate
existing hypotheses

perform statistical tests of
hypotheses

build intuition and new
hypotheses

perform statistical tests on
held-out datasets

(LLE, jPCA, dPCA, etc.)

(PCA, LDA, PPCA, FA, GPFA)

preprocessing

dimensionality
reduction

visualization

DimReduce

DataHigh

take binned
spike counts

testing

optional:
average across trials
apply kernel smoothing

optional:
average across trials
apply kernel smoothing

Figure 3. Flowchart for a data analysis procedure that utilizes visualization. The user may input raw spike trains into DataHigh, perform
dimensionality reduction using the DimReduce tool (left-hand side of dimensionality reduction) and visualize many 2-d projections of the
extracted latent space using DataHigh. The user may also perform dimensionality reduction outside the DataHigh environment (right-hand
side of dimensionality reduction) and input the identified latent variables into DataHigh for visualization.

With the advent of multi-electrode recordings, it has become
less common to listen to and visualize neural activity as it
streams in, simply due to the sheer quantity of the neural
data (e.g., if there are 100 recording electrodes). Using
dimensionality reduction in tandem with visualization allows
experimenters to quickly inspect a large amount of data and
perform error checking between each recording session of an
experiment. This can help to guide changes in the design of an
experiment, to build intuition about the population activity,
and to detect any potential problems with the recording
apparatus. For example, this approach led experimenters to
identify individual, outlying trials (Churchland et al 2010,
Yu et al 2009) and electrodes that contained cross-talk (Yu
et al 2009). As the number of sequentially- or simultaneously-
recorded neurons increases, having methods for quickly

building intuition about the population activity and assaying
large datasets will become increasingly essential.

2.2. Rotating a 2-d projection plane

The main interface of DataHigh (figure 4) allows the user to
quickly and smoothly rotate a 2-d projection plane in the k-d
space, where k is the number of identified latent variables.
The goal is to provide the minimum set of ‘knobs’ that allow
the user to achieve all possible rotations within the k-d space.
We first describe the mathematical idea of our approach, then
the implementation. The mathematical details presented in
this section are not necessary to use DataHigh, and may
be skipped without loss of intuition for the tool. We begin
with two arbitrary orthonormal k-d vectors, v1 and v2, which
define the horizontal and vertical axes, respectively, of a 2-d

5

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

Figure 4. Main interface for DataHigh. Central panel: 2-d projection of 15-d single-trial neural trajectories extracted using GPFA from
population activity recorded in premotor cortex during a standard delayed-reaching task for two different reach targets (green and blue)
(section 3.2). Dots indicate time of target onset (red) and the go cue (cyan). Gray indicates baseline activity before stimulus onset. Preview
panels (left and right of central panel): clicking and holding on a preview panel instantly rotates one of the two projection vectors that make
up the central 2-d projection. The bottom right corner shows the per cent variance of the latent space that is captured by the central 2-d
projection. The Toolbar (far right) allows the user to access analysis tools described in section 2.3.

projection plane. To rotate the projection plane, we keep one
vector v1 fixed, while rotating the other vector v2. To maintain
orthogonality, v2 must rotate in the (k −1)-d orthogonal space
of v1. In this space, any rotation of v2 can be fully specified by
(k −2) angles. Thus, we provide the user with (k −2) ‘knobs’
(right-hand panels in figure 4) to rotate v2 while keeping
v1 fixed. Each panel shows a preview of the resulting 2-d
projection if v2 were rotated by 180◦ in a particular rotation
plane. The user can click and hold on a particular preview
panel, which continuously updates the central panel as v2 is
rotated smoothly in that plane. Similarly, we can fix v2 and
rotate v1, which yields an additional (k − 2) preview panels
(left-hand panels in figure 4). Thus, 2 · (k − 2) ‘knobs’ are the
least required to choose any possible 2-d projection of the k-d
space.

Explicitly, we first use the Gram–Schmidt process to find
a set of (k − 1) orthonormal vectors spanning the orthogonal
space of v1; these vectors define the columns of Q ∈ R

k×(k−1).
We also define a rotation matrix Ri(θ) ∈ R

(k−1)×(k−1), which
rotates a (k−1)-d vector by an angle θ in the ith rotation plane:

Ri(θ) =

⎡
⎢⎢⎣

Ii−1

cos(θ) − sin(θ)

sin(θ) cos(θ)

Ik−i−2

⎤
⎥⎥⎦ , (1)

where Ip is a p × p identity matrix and i = 1, . . . , k − 2. To
rotate v2 by an angle θ in the ith rotation plane, we compute

vnew
2 = QRi(θ)QTvold

2 . (2)

The neural trajectories shown in figure 4 are 15-
dimensional (k = 15), leading to the use of 13 preview
panels for v1 (the x-axis projection vector) and 13 preview
panels for v2 (the y-axis projection vector). At present,
DataHigh can support dimensionalities up to k = 17 (30
preview panels), which we found to be large enough for most
current analyses, yet small enough to have all preview panels
displayed simultaneously on a standard monitor. For k > 17,
DataHigh applies PCA to the neural states or neural trajectories
and retains the top 17 PCA dimensions for visualization.
Alternatively, the user may implement a larger number of
preview panels in DataHigh.

2.3. DataHigh analysis tools

In addition to the continuous rotation of a 2-d projection plane,
DataHigh offers a suite of additional analysis tools that are
useful for exploratory data analysis. We provide motivation
and a description for each tool here, and list implementation
details in appendix B.

• Find projection. The user might want to compare the 2-d
projections found in DataHigh with static 2-d projections
found by PCA, LDA, or cluster PCA (figure 5). A random
projection can also be chosen. Find projection smoothly
rotates the current 2-d projection to the desired static 2-d
projection. Cluster PCA is a variant of PCA whereby the
datapoints (either neural states or neural trajectories) are

6

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

(A) (B)

Figure 5. Find Projection tool. Static 2-d projections found by (A) PCA and (B) LDA, when applied to the data shown in figure 4. The
colors (green and blue) denote different reach targets, and for each reach target, five neural trajectories are shown.

Figure 6. Genetic search tool. The user selects projections of interest (highlighted in red) and the tool transforms the current projections to
be more similar to the selected ones for the next generation. Each panel displays a 2-d projection of single-trial neural trajectories for two
reach targets (green and blue). These are all projections of the same 15-d latent space shown in figure 4.

first averaged within each condition, then PCA is applied
to the condition means. This yields a 2-d projection which
separates one condition from another, while ignoring trial-
to-trial variability.

• Genetic search. Although DataHigh can in principle
achieve any 2-d projection of the k-d space, it does so using
a series of ‘local’ rotations. In other words, the preview
panels in the main DataHigh interface show only local
perturbations of the 2-d projection plane (figure 4). Thus,
we created the Genetic search tool, which allows the user
to first see a more global view of the population activity
and then to home in on features of interest (figure 6). This
global view is provided in the form of 15 projections that
are randomly sampled from the space of all possible 2-d
projections. The user can then select the most ‘interesting’

projections, and a new iteration occurs in which 15 new
2-d projections are generated to be similar to the selected
projections. The search continues until the user decides
to upload a projection to the main display. This tool was
inspired by genetic algorithms, where the key innovation
is that the user controls each evolution step.

• 3-d projection. Rotating a 2-d projection plane in the
latent space can sometimes be difficult to intuit because
a small rotation may lead to considerably different 2-d
projections. Instead, the user can rotate a 3-d projection
in Matlab’s built-in 3-d viewer, where rotation may
be more intuitive. The 3-d Projection tool uses the
current 2-d projection, along with a randomly-chosen
orthonormal third projection vector, to allow visualization
in Matlab’s 3-d viewer (figure 7). However, switching

7

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

Figure 7. A 3-d projection of trial-averaged neural trajectories from
section 3.3 during reaching movements. Each neural trajectory
corresponds to one reach condition.

the third projection vector to a different randomly-
chosen projection vector can give noticeably different 3-d
projections, which underscores the need to look at many
projections of the latent space. Like the Pop figure tool in
section 2.3, the 3-d figure may be opened in a new Matlab
figure for further editing.

• Evolve. Different neural trajectories may sometimes take
a similar stereotyped path in latent space, but the paths are
traced out at different speeds. For example, it is possible
for a motor plan or decision to form more quickly on
some trials than others. To highlight the timing differences
between neural trajectories, we implemented the Evolve
tool to display a movie of the neural trajectories playing
out together over time. The movie may also be saved for
external viewing.

• Single dimension. One might want to view each of the
k latent variables separately to see how the population
activity varies in each latent dimension. For neural states,
Single dimension computes a histogram of latent values
for each condition and each latent variable. Each of
the k plots shows an overlay of all of the conditions’
histograms for the corresponding latent variable. For
neural trajectories, each latent variable is plotted versus
time (figure 8). The number of plots k equals the number
of latent variables.

• Depth perception. Distances in a 2-d projection may
be misleading because two points that are far away in
the k-d latent space may appear close together in a
2-d projection. To help intuit the shape of a cluster, infer
distances between clusters, and identify outlying points,
Depth perception orders neural states by their projected
values onto a vector that points in the direction of greatest
variance in the current projection vectors’ orthogonal
space. Datapoints that have a similar projected value will
be similar in size and color (figure 9). This tool is not
available for neural trajectories.

• Freeroll. To passively visualize the latent space, one can
watch the main 2-d projection display while the projection

plane randomly rotates in the latent space. Akin to a
drifting screensaver, Freeroll continuously rotates the
2-d projection plane in a random fashion without user
intervention. The tool repeatedly ‘clicks and holds’ on a
random preview panel (the preview panels flank the main
display in figure 4) for a random period of time.

• Conditions. For datasets with many experimental
conditions, the user might want to first examine the neural
states or trajectories of a small number of experimental
conditions before viewing all conditions at once. The
Conditions tool allows the user to selectively display
any subset of the experimental conditions in the dataset.
All subsequent analyses within DataHigh use only the
selected conditions. The user can choose to recenter the
data based on the updated set of experimental conditions.

• Update colors. For visual reference, the user can color-
code neural states and segments of neural trajectories
based on experimental condition and epoch. The Update
colors tool allows the user to change color attributes,
which are initially supplied by the user as part of the
input structure (section 2.4). The specified color for each
condition’s corresponding neural states may be changed.
For each neural trajectory, the start index and color may
be changed for any experimental epoch (e.g., baseline
period, stimulus period, delay period, etc.). The resulting
changes may be saved and updated in DataHigh.

• Capture. It is often useful to save particular 2-d projections
and keep them on hand for later viewing. The Capture
tool adds the current 2-d projection to a queue of
saved projections, which are shown as thumbnail images
(figure 10(A)). A projection can be uploaded to the central
panel simply by clicking on its thumbnail image.

• Drag trajectory. The user might want to understand how
each latent variable contributes to a neural trajectory by
altering the latent variable’s timecourse and visualizing
the changes in the latent space. Drag trajectory plots each
of the k latent variables of a neural trajectory versus time
(figure 10(B)). The user can ‘perturb’ the trajectory by
dragging the latent-variable-versus-time curves and see
its effect in the current 2-d projection. The perturbed
trajectory can then be sent to the main projection display
(figure 4) for further inspection.

• Zoom/rotate allows the user to scale the main 2-d
projection axes to zoom in or out, change the rotation
speed, and rotate the current 2-d projection within its
projection plane around the center of the projection.

• Pop figure replicates the main projection with a pop-up
Matlab figure. The user may proceed to edit the figure
as a regular Matlab plot, adding axis labels, a title,
and annotations. The figure can then be saved as .fig,
.jpg, .eps, and .pdf.

• Weights displays how each latent variable contributes
to the main 2-d projection. The Weights tool plots the
elements of v1 and v2 as bar graphs. The projection vectors
v1 and v2 can be saved for use outside the DataHigh
environment. The user can also manually specify the
values of v1 and v2 in a .mat file, and load the projection
vectors into DataHigh.

8

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

Figure 8. Single dimension tool. Each panel shows one of the 15 latent variables versus time for the neural trajectories shown in figure 4. In
this case, the latent variables are ordered such that the first latent variable (panel ‘1’) captures the greatest covariability while the the last
latent variable (panel ‘15’) captures the least covariability in the population activity.

Figure 9. Depth perception tool. The size of each point corresponds to how close that point is to the user in the projection plane’s orthogonal
space. The green and blue neural states correspond to two different reach targets, as described in section 3.1. The red neural states are error
trials that were incorrectly classified by a Poisson Naı̈ve Bayes classifier.

• Additional annotations for neural states: for each
experimental condition, display cluster mean, covariance
ellipse, origin of latent space, and first principal
component direction (figure 11). The cluster mean
and covariance ellipse summarize the location and

scatter of neural states. The origin of the latent spaces
provides a visual reference point, which is helpful for
orienting the user during rotation of the 2-d projection
plane. DataHigh can also display a line that indicates
the direction of greatest trial-to-trial variability in the

9

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

(A) (B)

Figure 10. (A) The capture tool saves selected projections in a queue. A saved projection can be loaded by clicking on its thumbnail.
(B) Drag trajectory allows the user to manipulate a neural trajectory by dragging one of the points placed along the trajectory. Each panel
plots one of the latent variables versus time (left panels). The result is immediately updated in the 2-d projection display (right panel).

Figure 11. Trial-to-trial variability of neural states during reach planning. Each point corresponds to one trial and is colored according to
reach target. For each cluster, the user can choose to display the one-standard-deviation ellipse, cluster mean, and/or the direction of greatest
trial-to-trial variability (thick lines). The data corresponds to the example in section 3.1.

k-d space, and how well that direction aligns with the
current 2-d projection plane. The length and direction of
this line dynamically updates as the user rotates the 2-

d projection plane, and the user can compare how the
lines differ in length and direction between experimental
conditions.

10

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

• Additional annotations for neural trajectories: display
average trajectories for each experimental condition and
plot task epoch boundaries with colored dots (figure 4).
An average trajectory provides a visual reference
when examining many single-trial neural trajectories.
Epoch boundaries provide reference points when neural
trajectories transition between epochs in an experiment
(e.g., a task cue).

2.4. Data preprocessing and format

The first pre-processing step is to choose the bin width in
DimReduce, which takes spike counts starting at the first
timepoint of every trial. For neural states, the user should
choose the bin width to be the length of the shortest trial,
which is the maximum bin width allowed in DimReduce. If
the user wants to analyze the neural states for a particular
experimental epoch of each trial (e.g., stimulus period, delay
period, or movement period), each trial should be truncated
to include only timepoints that are within that epoch before
the trials are input into DimReduce. For single-trial and
trial-averaged neural trajectories, choosing the bin width is
a tradeoff between the desired time resolution and the ability
of dimensionality reduction methods to accurately estimate
underlying changes in firing rate. Using a smaller time bin
gives better time resolution. However, the spike counts will
tend to be smaller (in the limit, the counts will be all zeros
and ones), and it can become difficult to detect co-fluctuations
in firing rate (Cohen and Kohn 2011). We suggest starting
off with a default bin width of 20 ms, which we found to be
a good compromise between the time resolution and mean
spike counts in analyses of population activity in the motor
and visual cortices (Churchland et al 2010).

Before performing dimensionality reduction, we also
suggest the following two pre-processing steps. First, the
user should compute the rate of coincident spikes (with
1–2 millisecond precision) between each pair of electrodes.
It is possible for different electrodes to become (partially)
electrically coupled (termed electrode cross-talk), leading to
spikes that occur at the same time on multiple electrodes
(Yu et al 2009). A dimensionality reduction algorithm would
then dedicate a latent variable to capturing this strong co-
fluctuation, possibly leading to ‘jagged’ neural trajectories.
Thus, we recommend removing all but one electrode in each
group of electrodes that show an abnormally large percentage
of coincident spikes. Second, we suggest removing neurons
with a low mean firing rate (<1 spike per second). These
neurons tend to not contribute much to the extracted neural
states or trajectories, and can cause dimensionality reduction
algorithms to become unstable due to the prevalence of zero
spike counts.

The input format depends on whether the user wants to
input raw spike trains into DimReduce or extracted latent
variables into DataHigh (which correspond to the left-hand and
right-hand sides of pre-processing in figure 3, respectively).
The input structure is a Matlabstruct,D, and was designed for
simple formatting while maintaining a high level of flexibility.
For input into the dimensionality reduction tool DimReduce,

the simplest and suggested form of D has a data field, where
D(i).data is a matrix (number of neurons × number of
milliseconds) that contains the ith trial’s spike trains in 1 ms
time bins.

For input into DataHigh, the simplest form of D has two
fields, data and type. The type field takes a string and
denotes which type of data: ‘state’ or ‘traj’. For neural
states, each D(i) specifies the ith condition, and D(i).data
is a matrix of size k × N, where k is the dimensionality of the
latent space and N is the number of trials for that condition.
For neural trajectories, D(i) specifies the ith trajectory, and
D(i).data is a k × T matrix specifying a k-dimensional
trajectory that is T timesteps long. Optional fields may also
be included for neural states and trajectories to color-code
condition and epoch information. Details about optional fields
are listed in appendix A, and examples are included in the
DataHigh software package.

2.5. DimReduce

To facilitate the application of dimensionality reduction
methods to neural data, we developed an optional
dimensionality reduction tool to DataHigh, called DimReduce
(figure 12). The user inputs raw spike trains, and DimReduce
extracts the corresponding latent variables, which are
automatically uploaded to DataHigh (left-hand side of
dimensionality reduction in figure 3). DimReduce gives step-
by-step instructions, embedded in the GUI with large red
numbers and the ‘Next Step’ button (figure 12), to perform
dimensionality reduction, and guides the user to choose
parameters that specify how to pre-process the data (e.g., time
bin width, mean firing rate threshold, and smoothing kernel
width), to select a dimensionality reduction method, and to
specify a set of candidate dimensionalities for cross-validation.
To identify the optimal number of latent dimensions,
DimReduce computes a cross-validated data likelihood and
a cross-validated leave-neuron-out prediction error (Yu et al
2009) for each user-specified candidate dimensionality.
DimReduce plots these cross-validated metrics versus latent
dimensionality, and the user can inspect these plots to find
the latent dimensionality which maximizes the cross-validated
data likelihood or minimizes the leave-neuron-out prediction
error. Using a slider in the GUI, the user can then specify
the number of latent variables DimReduce should extract and
upload to DataHigh. To give the user a preview of the extracted
latent variables, the tool displays a random 2-d projection
of the latent space and a heat map of the loading matrix,
which describes how each latent variable contributes to each
neuron’s activity. The tool also includes a viewer that plots
the timecourse for each latent variable. The tool provides
help buttons for how to choose a dimensionality reduction
method and select pre-processing parameters, as well as how
to interpret the cross-validated metrics.

DimReduce includes five linear dimensionality reduction
methods that are computationally fast and have been fruitfully
applied to analyze neural population activity. The five methods
included are PCA, Fisher’s linear discriminant analysis (LDA),
probabilistic PCA (PPCA), FA, and GPFA (Bishop 2006, Yu
et al 2009). If the user would like to use a dimensionality

11

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

Figure 12. DimReduce allows the user to input raw spike trains, perform dimensionality reduction, choose the latent dimensionality, and
upload the extracted latent variables to DataHigh. The large red ‘1’ instructs the user where to complete the first step, which is to choose a
bin width. Clicking the ‘Next Step’ button increments the red step number and moves it to the next step. The example here shows a plot of
leave-neuron-out prediction error versus candidate latent dimensionality. Using this metric, the optimal latent dimensionality is the
dimensionality with the minimum cross-validated prediction error (starred on the plot).

reduction method that is not currently available in DimReduce,
the user may extract the latent variables outside the DataHigh
environment and input them directly into DataHigh for
visualization (right-hand side of dimensionality reduction in
figure 3). For example, latent variables can be extracted
by locally-linear embedding (Stopfer et al 2003), jPCA
(Churchland et al 2012), demixed PCA (dPCA) (Brendel et al
2011), and linear dynamical systems (Yu et al 2009, Macke
et al 2011). These methods may be added to future releases of
DataHigh.

2.5.1. Selecting a dimensionality reduction method. The
choice of dimensionality reduction method depends on the
scientific questions of interest and the properties of
the population activity to be visualized. Key considerations
include whether the neurons were sequentially or
simultaneously recorded, whether the user is interested in
comparing single-trial or trial-averaged population activity,
and whether the user is interested in the timecourse of the
population activity. For each class of neural data, we shall
recommend a corresponding dimensionality reduction method
that we believe is appropriate for visualization purposes.

If the user is interested in trial-to-trial variability, where
there is a single spike count vector (i.e., a point in multi-
dimensional firing rate space) for each trial, we suggest FA.
FA attempts to remove the independent Poisson-like spiking

variability to identify a set of shared factors that describes the
co-fluctuations of the activity across the neural population. FA
has advantages over PCA, which assumes no observation noise
and is thus less effective at removing Poisson-like spiking
variability, and PPCA, which assumes that each neuron has
the same observation noise variance. In contrast, FA allows
neurons with different mean firing rates to have different levels
of observation noise, which better agrees with Poisson-like
spiking variability that depends on mean firing rate.

If the user is interested in single-trial neural trajectories,
we recommend using GPFA (Yu et al 2009). GPFA extends FA
to include temporal smoothing of the latent variables, where
the level of smoothness is determined by the data. Since the
publication of Yu et al (2009), we have accelerated the running
time of the GPFA Matlab code by two orders of magnitude for
the same hardware. For example, applying GPFA (i.e., running
the EM algorithm once to convergence) to 100 neurons and 200
experimental trials now takes less than a minute on a standard
single-processor laptop computer.

If the user is interested in comparing trial-averaged
population activity across different experimental conditions,
we suggest using PCA, which identifies latent variables (i.e.,
principal components) that correspond to axes of greatest
variance. In contrast to PPCA and FA, PCA does not have an
explicit observation noise model to help remove the Poisson-
like spiking variability. The use of PCA is well-justified here

12

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

because trial-averaging (to produce the PSTHs that are input
to PCA) likely removes much of the Poisson-like spiking
variability, especially as the number of trials that are averaged
together increases. If averaging over a small number of trials,
the user can choose to apply kernel smoothing to the PSTHs.

2.5.2. Choosing the number of latent variables for
visualization. One typically identifies the optimal latent
dimensionality from the data by performing cross-validation
on a range of candidate dimensionalities. Cross-validation can
be time-consuming because each candidate dimensionality
needs a separate set of model parameters to be fit for each cross-
validation fold. For visualization purposes, finding the optimal
dimensionality is not crucial, and choosing a number of latent
variables that capture most of the richness in the data usually
suffices. To do this, we suggest first performing dimensionality
reduction with a large number of latent variables (e.g., a 50-d
latent space for 100 neurons) without cross-validation. Then,
choose a small subset of top latent variables that explain most
of the variability. For PCA and PPCA, common methods for
choosing this subset involve viewing the eigenspectrum of the
sample covariance matrix and looking for a ‘bend at the elbow,’
or choosing a dimensionality that explains greater than 90%
of the variance. Likewise for FA and GPFA, one may view the
eigenspectrum of the shared covariance matrix and again look
for an elbow. The shared covariance matrix is defined by CCT,
where C (number of neurons × number of latent variables)
is the loading matrix. A complementary view is provided by
plotting the timecourse separately for each orthonormalized
latent variable (Yu et al 2009). Orthonormalization has two
key benefits: (i) it provides an ordering of the latent variables
from greatest to least covariance explained (similar to PCA),
and (ii) the units of the latent variables will be the same as
the units of the observed variables (in this case, spike counts).
After orthonormalization, the user can focus on visualizing
the top dimensions. As one proceeds to the lower dimensions,
one typically sees less variability in the latent variables over
time, across trials, or across conditions (figure 8). The user can
estimate visually how many of the top dimensions are needed
to capture the interesting structure in the population activity.

3. Data analysis examples

We demonstrate here three examples of the utility of DataHigh
for exploratory neural data analysis. The datasets discussed in
this section are included in the DataHigh software package.

3.1. Trial-to-trial variability of neural states

One possible use of DataHigh is to examine how the population
activity binned within a fixed time window varies from trial-to-
trial. Visualizing the size and shape of trial-to-trial variability
has important links to the study of spike count correlations
(Averbeck et al 2006, Cohen and Kohn 2011), and can motivate
the development of a more accurate brain-computer interface
(BCI) classifier (Santhanam et al 2009). The specific example
here comes from multi-electrode array recordings in premotor
cortex while a monkey is planning to reach to different

visual targets. Previous studies have shown that the population
activity in premotor cortex reflects the identity of the upcoming
reach (Santhanam et al 2006). We first took spike counts across
61 neurons in a 400 ms window during the plan period of a
delayed reaching task (dataset G20040123) (Yu et al 2009). We
then applied FA to extract a 7-d neural state of each trial using
DimReduce. The latent dimensionality seven was obtained by
finding the peak of the cross-validated log-likelihood plot.

We then used DataHigh to visualize the 7-d latent space
(figure 11). The most salient feature is the clustering of the
neural states according to reach target. In other words, the
neural states on repeated trials for the same reach target tend
to be closer together than neural states on trials for different
reach targets. Furthermore, the clusters appear in the same
order around a circle as the corresponding reach targets appear
in the monkey’s workspace. This is consistent with the finding
that tuning curves tend to vary smoothly with reach direction.
We can also study the shape of the clusters, as well as the
directions of greatest trial-to-trial variability. For example, if
there were one dominant direction of trial-to-trial variability,
then the cluster would look like a ‘pencil.’ We can then ask
what direction the ‘pencil’ is pointing in, and whether that
helps or hurts discriminability among the reach targets. For
each cluster, the thick line represents the 2-d projection of a
unit vector pointing in the direction of greatest trial-to-trial
variability in the 7-d latent space. The length of the line
indicates the extent to which the direction of greatest variability
(i.e., the ‘pencil’) in the 7-d space aligns with the 2-d projection
plane. Note that the lines need not align with the direction of
greatest variability as seen in the 2-d projection (i.e., each
line need not align with the major axis of the corresponding
ellipse). For this example, we found considerable trial-to-
trial variability for each cluster orthogonal to the projection
shown in figure 11. This underscores the danger of drawing
conclusions from any individual 2-d projection, as well as the
need for looking at many 2-d projections using DataHigh.

To assess the discriminability of different targets based on
the neural activity recorded on a single-trial basis, we applied
a Poisson Naı̈ve Bayes classifier to the 61-d spike counts.
Consistent with the clear separation of the clusters shown
in figure 11, we found that 98% of the trials were correctly
classified (chance level: 14%). A key benefit of DataHigh
is that it allows us to go beyond a simple per cent correct
value, and visualize in what regions of the corresponding latent
space the classifier succeeds and fails. Figure 9 shows a 2-d
projection of the 7-d neural states described above for two
of the seven reach targets. Correctly-classified neural states
are colored based on their corresponding reach target (green
or blue). Incorrectly-classified neural states are colored red.
This dataset had highly-separable clusters of neural states,
and the classifier incorrectly classified only a few outlying
datapoints. By visualizing how error trials (i.e., red dots) differ
from correctly-classified trials, we can gain insight about how
to improve the classifier to increase classification accuracy.
Likewise, this approach can be applied to behavioral tasks to
understand how the population activity differs on trials with
successful behavior versus unsuccessful behavior.

13

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

Figure 13. An outlying trial (red trace) can be easily identified by rotating the 2-d projection plane. Green trajectories represent single-trial
population activity for a single reach target. A subset of these trials is shown in figure 4.

3.2. Single-trial neural trajectories

Another use for DataHigh is to examine how the population
activity evolves over time within a single trial, as well as
compare how the timecourse of population activity varies
across trials. The benefits of visualization from section 3.1
also hold here; the key difference is that we now consider
timecourses of neural activity. Instead of comparing raster
plots across trials to understand how one trial differs from
another (figure 1), we can apply dimensionality reduction and
compare the extracted neural trajectories. With the same 61
simultaneously-recorded neurons in section 3.1 and a 20 ms
bin width, we used GPFA to extract 56 single-trial neural
trajectories for each of two reach conditions (five trials for
each condition are shown in figure 4, dataset G20040123).
Our previous work has shown that neural activity goes from a
baseline region along a movement planning path, then along
a movement execution path (Yu et al 2009). Furthermore,
we expect trajectories for different reach targets to take on
different paths based on our ability to decode the reach
target from population activity, as described in section 3.1
(Santhanam et al 2006). If we use PCA or LDA to visualize
the trajectories, they look like ‘spaghetti’ and are hard to
interpret (figure 5). Using DataHigh’s analysis tools (such as
Freeroll, Find projection, and Genetic search), we can quickly
search a large number of 2-d projections to find projections
in which the trajectories splay out over time and are grouped
by reach target (figures 4 and 6). We can study the size and
direction of trial-to-trial variability and how the trial-to-trial

variability changes over time (Churchland et al 2010). We
also find DataHigh to be useful for identifying outlying trials
and studying their relationship with the non-outlying trials
(figure 13). DataHigh’s interface allows the user to highlight
any trajectory by clicking on it, change the color of the
trajectory on the fly, and save this change to the Matlab data
structure.

3.3. Trial-averaged neural trajectories

We can use DataHigh to analyze population activity in which
the neurons are recorded sequentially using single electrodes,
and ask how the timecourse of the trial-averaged population
activity varies across different experimental conditions. The
particular example we will consider here is 118 neurons
recorded sequentially during a delayed reaching task in
which there are 27 different reach conditions (monkey N)
(Churchland et al 2012). One way to analyze this activity
is to view 118 plots, each with 27 overlayed PSTHs. Because
of the large number of plots and the temporal complexity
and heterogeneity of the PSTHs (Churchland et al 2012),
it is difficult to succinctly summarize the richness of the
population activity simply by viewing the PSTHs. Instead,
we can apply dimensionality reduction (in this case, PCA with
k = 6 latent dimensions) using DimReduce and visualize the
latent variables in DataHigh (figure 7). We analyzed neural
activity for 200 ms starting 50 ms after the go cue. By
viewing many 2-d projections, we found two salient features.
First, the trial-averaged trajectories start off at different

14

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

locations before spiraling outwards. This is a consequence
of preparatory activity differing for these different reach
conditions (Churchland et al 2010). Second, there is rotational
structure, and the rotation direction is consistent with where
the trajectory starts (Churchland et al 2012). The key benefit
of DataHigh here is that it allows the user to explore the rich
structure of the population activity without needing to know
a priori what structure is present. Without visualization, one
would need to sequentially test whether different features are
present in the population activity, which is a time-consuming
process. Even if this process were carried out, salient features
may be missed simply because one did not explicitly test for
them.

4. Comparison to GGobi

A popular visualization tool is GGobi (Swayne et al 2003), to
which we compare DataHigh. The most prominent difference
is that DataHigh, unlike GGobi, was almost entirely developed
to visualize high-dimensional time series data (i.e., how neural
trajectories play out over time). DataHigh also includes a suite
of visualization tools that are tailored for neural data analysis.
Fundamentally, the tools are designed for different classes of
data analysis problems. GGobi displays relationships between
an experiment’s independent and dependent variables (i.e.,
supervised learning), while DataHigh is tailored for studying
latent variables that describe many observed variables as
they co-fluctuate together (i.e., unsupervised learning). For
example, while GGobi finds individual relations between
olive harvesting locations and protein levels in corresponding
olive oils, DataHigh displays latent variables that capture the
activity co-fluctuations across a neural population without
requiring prior assumptions about their relationship to stimulus
parameters or the subject’s behavior. GGobi allows the user
to toggle variables on and off, but this ability is less useful in
DataHigh, where the user is interested in visualizing the latent
space in which all latent variables are plotted together.

The interface of DataHigh, unlike GGobi’s external
software platform that requires XML-formatted input, is
completely incorporated into the Matlab environment. Matlab
was chosen for its hardware/platform independence and
because it is currently the most commonly-used data analysis
software in the neuroscience community. This allows users to
modify DataHigh’s code with Matlab’s extensive library of
functions and to input commonly-used data structures for raw
spike trains.

One of the key advantages of DataHigh is the use of
preview panels in the main DataHigh interface (figure 4). This
allows the user to make an informed decision about which
panel to click on and facilitates driving toward interesting
projections. In contrast, GGobi provides an interface to change
the coefficients of the projection vectors, but does not provide a
preview of how changing the projection vectors would change
the 2-d visualization (figure 14). Overall, we found it easier to
navigate the k-d space using DataHigh. In addition, DataHigh
provides the ability to save and load projections and to apply
commonly-used dimensionality reduction methods to the data.

5. Discussion

One approach to studying the high-dimensional activity of a
population of neurons is to perform dimensionality reduction.
However, the number of identified latent variables needed
to capture the dynamics and structure of population activity
is often greater than 3 and, as a result, it is difficult to
directly visualize neural states or neural trajectories in the
extracted latent space. To address this limitation, we developed
DataHigh, an interactive Matlab GUI that allows the user to
smoothly rotate a 2-d projection plane in the latent space and
quickly view a large number of 2-d projections. DataHigh is
also equipped with a suite of visualization tools tailored to
neural data analysis.

We found DataHigh to be particularly useful for
exploratory neural data analysis, where the relationship
between the activity of any individual neuron and externally-
imposed (e.g., sensory stimulus) or externally-measurable
(e.g., subject’s behavior) quantities may be unknown. By
first applying dimensionality reduction to neural population
activity, we attempt to relate the activity of each neuron to
the activity of other neurons (either recorded simultaneously
or sequentially). These relationships are captured by the
identified latent variables, which describe how the activity of
the neurons covary. In principle, we would like the population
activity to first ‘speak for itself’ via the identified latent
variables. Then, we can attempt to relate the latent variables
to externally-imposed or externally-measurable quantities.
DataHigh facilitates the process of building intuition about
how the latent variables (and, by extension, the population
activity) vary over time, across trials, and across conditions.
More generally, DataHigh can be used to visualize the latent
variables of any model of population activity, including
generalized linear models (Vidne et al 2012).

Visualization can be a valuable component of the data
analysis procedure. For example, Bartho et al (2009) presented
sustained auditory tones and, as a first step of analysis,
visualized the corresponding trial-averaged neural trajectories
to gain insight into the population activity recorded from the
auditory cortex. The visualization of the neural trajectories
suggested that the sustained population response differed
in magnitude and direction from the transient population
response directly after stimulus onset. They then formed
hypotheses about what they had seen in the visualizations
and conducted statistical tests to either confirm or reject the
hypotheses. Visualization with DataHigh, in tandem with
statistical techniques (including statistical tests, decoding
algorithms, models of population activity, and simulations),
provides a powerful analysis framework to build intuition and
to test scientific hypotheses.

DataHigh’s code is released as open source, so that
users may modify and add to the suite of available tools.
This may include adding more dimensionality reduction
methods to DimReduce, implementing projection-finding
algorithms based on some cost function, such as jPCA
(Churchland et al 2012) or dPCA (Brendel et al 2011),
and extending DataHigh for real-time visualization of
population activity during experiments. The DataHigh

15

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

Figure 14. Screenshot of the GGobi graphical user interface while visualizing the same 15-d neural trajectories as shown in figure 4. The
left panel allows the user to select which variables to display and which coefficients of the projection vectors to manipulate. The right panel
displays a 2-d projection of the 15-d neural trajectories. Clicking and dragging in the right panel modifies the coefficients of the projection
vectors selected in the left panel. (GGobi version 2.1.9)

software package for Matlab can be downloaded from
www.ece.cmu.edu/∼byronyu/software.shtml.

Acknowledgments

We thank Patrick Sadtler, William Bishop, and John
Cunningham for valuable feedback about the DataHigh
software. This work was supported by the National
Science Foundation Graduate Research Fellowship Program
under grant no. 0946825, Department of Defense through
the National Defense Science and Engineering Graduate
Fellowship Program, Center for the Neural Basis of Cognition
(CNBC) and HHMI Undergraduate Research Fellowships,
NIH NICHD R01-HD-071686, NIH NINDS R01-NS-054283,
NIH Director’s Pioneer Award (1DP1OD006409), DARPA
REPAIR (N66001-10-C-2010), Burroughs Wellcome Fund,
and the Christopher and Dana Reeve Foundation.

Appendix A. Data format

For input into DimReduce, there are three optional fields
along with the required data field that contains raw single-
trial spike trains. The condition field takes a string to label
that trial’s experimental condition. The epochStarts field
is an s-dimensional vector that contains the starting time

(in milliseconds) for each of the s epochs of the trial. The
epochColors field is an s×3 matrix, where each row specifies
the RGB color of the trajectory segment for the corresponding
experimental epoch.

For input into DataHigh, there are two types of input
(neural states and neural trajectories) that take three optional
fields along with the required data and type fields. For neural
states, the condition field takes a string to label the condition
of the trials found in data. The epochStarts field takes
the scalar 1, while epochColors is a 1 × 3 vector that lists
the three RGB values for the condition’s color. For single-
trial and trial-averaged neural trajectories, the condition,
epochStarts, and epochColors fields follow the same
format as described for input into DimReduce, except that the
values in epochStarts are indices to the starting timepoints
of the epochs, not necessarily in milliseconds.

Appendix B. Implementation of analysis tools

In this section, we describe the implementation details of the
DataHigh analysis tools discussed in section 2.3.

• Find projection. To allow for a smooth transition between
projections, the current 2-d projection plane is gradually
rotated until the desired static 2-d projection is achieved
(Buja et al 2005). We first describe the intuition and then

16

http://www.ece.cmu.edu/~byronyu/software.shtml

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

the mathematical implementation. First, we compute the
two principal angles necessary to rotate the current 2-d
projection plane (defined by projection vectors Uc : k×2)
to the desired projection plane (defined by projection
vectors Ud : k × 2) in the k-d latent space. The first
principal angle is the smallest angle between two vectors
(called principal vectors) in which one vector lies within
the current 2-d projection plane and the other within
the desired 2-d projection plane. The second principal
angle follows how the first is defined except its principal
vectors must be orthogonal to the first principal vectors.
We aim to incrementally rotate the current projection
plane until the desired projection plane is achieved, and
for each incremented step, we display the 2-d projection
defined by the rotated projection vectors. We ensure that at
each step the rotated projection vectors are orthonormal,
which is crucial for visualization. Mathematically, we
first perform a singular value decomposition such that
Sc�ST

d = UT
c Ud , where Sc and Sd are 2 × 2 matrices and

� is a 2 × 2 diagonal matrix. Let γ = cos−1 (diag(�))

define the two principal angles, where γi refers to the ith
principal angle for i = {1, 2}. We also define Pc = UcSc

and Pd = UdSd as the principal vectors of the current
and desired projection planes, respectively. Let pci refer
to the ith column of Pc, which is the ith principal
vector for i = {1, 2}. To ensure orthonormality between
projection vectors, we perform Gram–Schmidt on Pd to
yield P̌d such that p̌di is orthonormal to the principal
vectors in Pc and the other vector in P̌d . Our aim is
to rotate Pc until it is equal to Pd . We step through a
loop, beginning at t = 0 and incrementally increasing t
until t = 1. At each step, we display a 2-d projection.
Let Pt : k × 2 be the rotated vectors for each step,
where t is the fractional scalar applied to the principal
angles, t = {0, 1

100 , 2
100 , . . . , 99

100 , 1}. For each t, compute
pti = cos (tγi)pci + sin (tγi) p̌di for i = {1, 2}. Note
Pt = Pc when t = 0 and Pt = Pd when t = 1. The step’s
projection vectors, Vt = PtST

c , can then be computed and
used to display the 2-d projection. The multiplication by
ST

c ensures that Vt = Uc when t = 0, and Vt defines the
same 2-d projection plane as Ud when t = 1.

• Genetic search. By clicking ‘Next generation’, each
projection is updated using the following rule: a selected
projection has a 10% chance of remaining the same, a
45% chance of rotating its projection plane by a small
angle in any direction with equal probability, and a 45%
chance of changing each of its projection vectors to be
a random linear combination of all selected projection
vectors while maintaining orthonormality. A non-selected
projection has a 10% chance of re-sampling a new random
projection and a 90% chance of rotating its projection
plane toward a randomly-chosen selected projection,
where the amount of rotation is half the angle between
the two projection planes. The user may also randomize
all current projections, re-starting the search.

• Evolve. Starting from the current timepoint, ten line
segments that connect the eleven most recent timepoints
are plotted with linearly diminishing line widths and make

up a ‘sliding trace’ of the trajectory. The ten line segments
are colored based on epoch colors. For reference, a thin
gray line shows the remainder of each trajectory that the
sliding trace has already passed. Evolve stops when all
trajectories have finished playing out over time, leaving a
colored line connecting the last eleven timepoints and a
thin gray line for the rest of the trajectory. Alternatively,
the user may pause Evolve at any point by clicking the
Evolve button before the sequence stops. Execution may
be resumed by re-clicking the Evolve button. The user
may save the entire Evolve sequence as an .avi, .mp4,
or .mj2 video file.

• Depth perception projects the high-dimensional data-
points onto the first principal component of the current
projection vectors’ orthogonal space. The size of each
datapoint reflects its principal component score, where
the largest point corresponds to the datapoint that has
the highest principal component score. Each point’s RGB
color, which corresponds to the neural state’s experimen-
tal condition, is also linearly scaled based on its principal
component score to control brightness. The marker of the
datapoint with the highest principal component score will
have the brightest color (i.e., its color will match the con-
dition’s given color, while other dots will have lesser RGB
values and appear darker).

• Freeroll is comparable to a randomized grand tour
(Asimov 1985). On each iteration, a random rotation
plane (indexed by i in equation (1)) and a random
angle (equivalent to clicking a preview panel without
release for a random amount of time) are chosen. Freeroll
proceeds to rotate the projection vectors in increments (θ
in equation (1)). Once the incremental rotations sum to the
chosen random angle, the next iteration occurs. Freeroll
stops rotating on a user-click.

• Conditions instantly replots the panels and main
projection display when conditions are selected or
deselected. All other DataHigh analysis tools only have
access to data from the selected conditions.

• Drag trajectory. The user selects which trajectory to
analyze using a drop-down menu. The value of a latent
variable can be perturbed by vertically dragging one of
the points placed along the trajectory. Every fifth point
along the trajectory is draggable. By dragging a point, the
adjacent draggable points also move by half the amount in
the direction of the dragged point. Then, the plot instantly
displays a cubic spline interpolation of the draggable
points to form a smooth trajectory for that latent variable.
For visual reference, the original trajectory is plotted
green in the background for each plot. The GUI also
shows a 2-d projection of the selected trajectory (using
the current projection vectors from the main projection
display), which updates in real time as the trajectory is
being dragged in the other panels. The user may also
select other trials, upload all resulting dragged trajectories
to the main DataHigh interface, and reload the original
trajectory.

• Covariance ellipses plots the 2-d covariance ellipse for
each neural state cluster. The covariance ellipse shows the

17

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

trial-to-trial variability in the 2-d projection. Specifically,
the ellipse represents the projected covariance matrix
A : 2 × 2 of the condition’s covariance matrix � : k × k,
where k is the number of the latent variables. For the
current projection vectors v : k × 2, A = vT �v. The first
principal component, u : k×1, of each condition’s cluster
is the top eigenvector of � and represents the direction of
greatest variance. The unit vector u may be projected onto
the 2-d projection as a line and positioned at the cluster
mean. The 2-d projected principal component need not
align with the 2-d covariance ellipse’s major axis.

• Average trajectories. For visualization purposes, the
single-trial neural trajectories for a given experimental
condition may be averaged in the latent space. This
provides a reference trajectory when examining single-
trial neural trajectories. Note that this differs from trial-
averaged neural trajectories, where averaging occurs
before dimensionality reduction is performed. One
difficulty with trial-averaging is that the duration of
an experimental epoch for each trial may be different,
and we want to ensure that the experimental epoch
boundaries are aligned across trials for averaging. For
ease of visualization, we also require a continuous average
trajectory as opposed to separate trajectory segments, each
aligned to an epoch boundary. Although there is not a
single best method for trial-averaging (which highlights
the dangers of interpreting trial-averaged quantities for
non-identical trials), we opted for a method that linearly
resamples the path represented by each neural trajectory
in the latent space based on the distance traveled between
epoch boundaries. This method ensures epoch boundary
alignment, continuity, and simplicity in implementation,
and works well for the population activity we have
examined. The following describes how the averaging
is performed. We first compute Ni, the average number
of timepoints in the ith epoch. On each trial, we then
resample the trajectory segment corresponding to the ith
epoch by placing Ni markers. The location of each marker
is determined by linearly resampling the distance along
the path of the trajectory segment such that the distance
along the path between two markers is the same for all
pairs of consecutive markers. Finally, we average the
Ni markers across trials to create the average trajectory
segment for the ith epoch.

References

Afshar A, Santhanam G, Yu B M, Ryu S I, Sahani M
and Shenoy K V 2011 Single-trial neural correlates of arm
movement preparation Neuron 71 555–64

Asimov D 1985 The grand tour: a tool for viewing multidimensional
data SIAM J. Sci. Stat. Comput. 6 128–43

Averbeck B B, Latham P E and Pouget A 2006 Neural correlations,
population coding and computation Nature Rev. Neurosci.
7 358–66

Bartho P, Curto C, Luczak A, Marguet S L and Harris K D 2009
Population coding of tone stimuli in auditory cortex: dynamic
rate vector analysis Eur. J. Neurosci. 30 1767–78

Berk R, Brown L and Zhao L 2010 Statistical inference after model
selection J. Quant. Criminol. 26 217–36

Bishop C M 2006 Pattern Recognition and Machine Learning
(Information Science and Statistics) (New York: Springer)
chapter 4 pp 191–2

Bouchard K E, Mesgarani N, Johnson K and Chang E F 2013
Functional organization of human sensorimotor cortex for
speech articulation Nature 495 327–32

Brendel W, Romo R and Machens C K 2011 Demixed principal
component analysis Advances in Neural Information
Processing Systems vol 24 ed J Shawe-Taylor et al
(Cambridge, MA: MIT Press) pp 2654–62

Briggman K L, Abarbanel H D I and Kristan W B Jr 2005 Optical
imaging of neuronal populations during decision-making
Science 307 896–901

Broome B M, Jayaraman V and Laurent G 2006 Encoding and
decoding of overlapping odor sequences Neuron 51 467–82

Buja A, Cook D, Asimov D and Hurley C 2005 Computational
methods for high-dimensional rotations in data visualization
Handbook Statistics: Data Mining and Data Visualization
vol 24 (Amsterdam: Elsevier) pp 391–413

Churchland M M, Cunningham J P, Kaufman M T, Foster J D,
Nuyujukian P, Ryu S I and Shenoy K V 2012 Neural
population dynamics during reaching Nature 487 51–6

Churchland M M, Cunningham J P, Kaufman M T, Ryu S I
and Shenoy K V 2010 Cortical preparatory activity:
representation of movement or first cog in a dynamical
machine? Neuron 68 387–400

Churchland M M and Shenoy K V 2007 Temporal complexity and
heterogeneity of single-neuron activity in premotor and motor
cortex J. Neurophysiol. 97 4235–57

Churchland M M, Yu B M, Sahani M and Shenoy K V 2007
Techniques for extracting single-trial activity patterns from
large-scale neural recordings Curr. Opin. Neurobiol. 17 609–18

Churchland M M et al 2010 Stimulus onset quenches neural
variability: a widespread cortical phenomenon Nature
Neurosci. 13 369–78

Cohen M R and Kohn A 2011 Measuring and interpreting neuronal
correlations Nature Neurosci. 14 811–9

Cohen M R and Maunsell J H R 2010 A neuronal population
measure of attention predicts behavioral performance on
individual trials J. Neurosci. 30 15241–53

Cowley B R, Kaufman M T, Churchland M M, Ryu S I,
Shenoy K V and Yu B M 2012 DataHigh: graphical user
interface for visualizing and interacting with high-dimensional
neural activity EMBS’12: Proc. IEEE Conf. on Engineering in
Medicine and Biology Society vol 2012 pp 4607–10

Durstewitz D, Vittoz N M, Floresco S B and Seamans J K 2010
Abrupt transitions between prefrontal neural ensemble states
accompany behavioral transitions during rule learning Neuron
66 438–48

Harvey C D, Coen P and Tank D W 2012 Choice-specific sequences
in parietal cortex during a virtual-navigation decision task
Nature 484 62–8

Luczak A, Bartho P and Harris K D 2009 Spontaneous events
outline the realm of possible sensory responses in neocortical
populations Neuron 62 413–25

Machens C K, Romo R and Brody C D 2010 Functional, but not
anatomical, separation of ‘what’ and ‘when’ in prefrontal
cortex J. Neurosci. 30 350–60

Macke J H, Buesing L, Cunningham J P, Yu B M, Shenoy K V
and Sahani M 2011 Empirical models of spiking in neural
populations Advances in Neural Information Processing
Systems vol 24 ed J Shawe-Taylor et al (Cambridge, MA: MIT
Press) pp 1350–8

Mante V, Sussillo D, Shenoy K V and Newsome W T 2013
Selective integration of sensory evidence by recurrent
dynamics in prefrontal cortex Nature at press

Mazor O and Laurent G 2005 Transient dynamics versus fixed
points in odor representations by locust antennal lobe
projection neurons Neuron 48 661–73

18

http://dx.doi.org/10.1016/j.neuron.2011.05.047
http://dx.doi.org/10.1137/0906011
http://dx.doi.org/10.1038/nrn1888
http://dx.doi.org/10.1111/j.1460-9568.2009.06954.x
http://dx.doi.org/10.1007/s10940-009-9077-7
http://dx.doi.org/10.1038/nature11911
http://dx.doi.org/10.1126/science.1103736
http://dx.doi.org/10.1016/j.neuron.2006.07.018
http://dx.doi.org/10.1038/nature11129
http://dx.doi.org/10.1016/j.neuron.2010.09.015
http://dx.doi.org/10.1152/jn.00095.2007
http://dx.doi.org/10.1016/j.conb.2007.11.001
http://dx.doi.org/10.1038/nn.2501
http://dx.doi.org/10.1038/nn.2842
http://dx.doi.org/10.1523/JNEUROSCI.2171-10.2010
http://dx.doi.org/10.1016/j.neuron.2010.03.029
http://dx.doi.org/10.1038/nature10918
http://dx.doi.org/10.1016/j.neuron.2009.03.014
http://dx.doi.org/10.1523/JNEUROSCI.3276-09.2010
http://dx.doi.org/10.1016/j.neuron.2005.09.032

J. Neural Eng. 10 (2013) 066012 B R Cowley et al

Rigotti M, Barak O, Warden M R, Wang X-J, Daw N D, Miller E K
and Fusi S 2013 The importance of mixed selectivity in
complex cognitive tasks Nature 497 585–90

Santhanam G, Ryu S I, Yu B M, Afshar A and Shenoy K V 2006 A
high-performance brain–computer interface Nature
442 195–8

Santhanam G, Yu B M, Gilja V, Ryu S I, Afshar A, Sahani M
and Shenoy K V 2009 Factor-analysis methods for
higher-performance neural prostheses J. Neurophysiol.
102 1315–30

Shenoy K V, Sahani M and Churchland M M 2013 Cortical control
of arm movements: a dynamical systems perspective Ann. Rev.
Neurosci. 36 337–59

Stevenson I H and Kording K P 2011 How advances in neural
recording affect data analysis Nature Neurosci. 14 139–42

Stopfer M, Jayaraman V and Laurent G 2003 Intensity versus
identity coding in an olfactory system Neuron 39 991–1004

Swayne D F, Temple Lang D, Buja A and Cook D 2003 GGobi:
evolving from XGobi into an extensible framework for
interactive data visualization Comput. Stat. Data Anal.
43 423–44

Vidne M, Ahmadian Y, Shlens J, Pillow J W, Kulkarni J,
Litke A M, Chichilnisky E J, Simoncelli E and Paninski L
2012 Modeling the impact of common noise inputs on the
network activity of retinal ganglion cells J. Comput. Neurosci.
33 97–121

Yu B M, Cunningham J P, Santhanam G, Ryu S I, Shenoy K V
and Sahani M 2009 Gaussian-process factor analysis for
low-dimensional single-trial analysis of neural population
activity J. Neurophysiol. 102 614–35

19

http://dx.doi.org/10.1038/nature12160
http://dx.doi.org/10.1038/nature04968
http://dx.doi.org/10.1152/jn.00097.2009
http://dx.doi.org/10.1146/annurev-neuro-062111-150509
http://dx.doi.org/10.1038/nn.2731
http://dx.doi.org/10.1016/j.neuron.2003.08.011
http://dx.doi.org/10.1016/S0167-9473(02)00286-4
http://dx.doi.org/10.1007/s10827-011-0376-2
http://dx.doi.org/10.1152/jn.90941.2008

	1. Introduction
	2. DataHigh
	2.1. Data analysis procedure
	2.2. Rotating a 2-d projection plane
	2.3. DataHigh analysis tools
	2.4. Data preprocessing and format
	2.5. DimReduce

	3. Data analysis examples
	3.1. Trial-to-trial variability of neural states
	3.2. Single-trial neural trajectories
	3.3. Trial-averaged neural trajectories

	4. Comparison to GGobi
	5. Discussion
	Acknowledgments
	Appendix A. Data format
	Appendix B. Implementation of analysis tools
	References

